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Abstract—A neurorehabilitation approach that combines
robot-assisted active physical therapy and Brain-Computer In-
terfaces (BCIs) may provide an additional mileage with respect to
traditional rehabilitation methods for patients with severe motor
impairment due to cerebrovascular brain damage (e.g., stroke)
and other neurological conditions. In this paper, we describe the
design and modes of operation of a robot-based rehabilitation
framework that enables artificial support of the sensorimotor
feedback loop. The aim is to increase cortical plasticity by means
of Hebbian-type learning rules. A BCI-based shared-control
strategy is used to drive a Barret WAM 7-degree-of-freedom arm
that guides a subject’s arm. Experimental validation of our setup
is carried out both with healthy subjects and stroke patients. We
review the empirical results which we have obtained to date, and
argue that they support the feasibility of future rehabilitative
treatments employing this novel approach.

I. INTRODUCTION

Current rehabilitation methods for patients with severe
motor impairment due to cerebrovascular brain damage are
limited in terms of providing long-term functional recovery. In
particular, functional recovery of stroke patients beyond one
year post-stroke is rare [1], and there is empirical evidence for
a long-term decline of functional independence [2]. Therefore,
novel rehabilitative strategies are needed.

In the last decade, many therapeutic robots and orthosis
have been developed to enhance post-stroke rehabilitation
of arm or hand movement and gaits (e.g., MIT-Manus [3],
MIME [4], ARMin II [5], Lokomat [6], [7], Hocoma [8], etc.).
Several rehabilitation robots have different modes of operation
(passive, active-assisted, and active-resisted) which resulted
in a promising overall effectiveness in clinical trials [9]–
[12]. Nevertheless, for arm rehabilitation, the improvement
in motor control of the impaired arm of stroke patients
provided by robot-assisted physical therapy may not result in a
consistent improvement of the functional abilities of the stroke
patients [11].

Recently, alternative strategies for neurorehabilitation have
been suggested, which are based on decoding of motor im-
agery with a Brain-Computer Interface (BCI). The feasability
of such motor imagery decoding has been demonstrated in
chronic stroke patients [13]. More importantly, these strategies
have exhibited beneficial effects on the restoration of basic
motor functions in stroke patients [14], [15].

The logical next step combines robot-assisted physical ther-
apy with BCI-based motor imagery decoding into an inte-

grative rehabilitation strategy. In such an integrative therapy,
it is essential that patients exert control over their robot-
assisted physical therapy. This step requires that a BCI sys-
tem decodes the movements intention of the patient. Here,
a continuous synchronization between the subject’s motor
imagery or movement attempt and the actual movement of the
robot that guides the subject’s impaired limb is required. Such
synchronization stands in contrast to previous studies where
haptic feedback was provided at the end of each trial [16].
It is likely to result in an increased cortical plasticity due
to Hebbian-type learning [17]–[19], and has the potential to
improve the functional recovery.

Fig. 1. A robot arm is attached to
the patient’s forearm and it may move
the patient’s forearm with the elbow
as the single degree of freedom (DoF).
The resting position, maximum exten-
sion and maximum flexion of the robot
arm can be adjusted depending on the
patient (adapted from [20]).

In this paper, we present
the combined BCI-robotics
system developed for this
purpose at the Max Planck
Institute for Intelligent
Systems. We drive a
Barrett WAM 7 degree-of-
freedom (DoF) arm (which
has been attached to the
subject’s impaired arm)
using an EEG- or ECoG-
based BCI shared-control
strategy. To achieve a high
classification accuracy
also with EEG, we aim
to decode only (one-
dimensional) movement
intentions or attempts of
pre-defined trajectories and
do not yet focus on the
alternative of decoding
multiple DoF from ECoG
recordings [21]. Decoding
a single DoF, we can
achieve not only high classification accuracy but also small
delays in the feedback loop. It is likely that these properties
are more important for inducing cortical plasticity than
movement complexity. We employ on-line signal processing
and machine learning methods to decode the recorded neural
signals. The WAM arm provides haptic feedback and it
implements three different modes of operation: passive,
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autonomous active, and subject-driven passive-active mode
(see Section II for a discussion on the modes of operations
of the robot arm).

The paper is organized as follows. Section II is devoted to
our approach for Brain-Robot Interfaces in neurorehabilitation,
including a description of the basic BCI setup, the modes of
operation of the Barrett arm and our resulting strategy. In Sec-
tion III, we review the empirical results that we have obtained
to date with healthy subjects as well as with stroke patients.
The paper concludes with a discussion and a summary of the
presented ideas in Section IV.

II. A BCI-BASED REHABILITATION ROBOTICS SETUP

Heading towards the goal of a framework for brain-robot
interfaces for stroke rehabilitation, we need to connect a brain-
computer interface with a robot in a manner that the resulting
haptic feedback benefits the patient. This part requires a BCI
interface that continuously adapts to the patient and learns
online how to decode his or her movement intention. See
Section II-A for the signal processing of the recorded neural
signals. A brain-robot interface obviously also requires that
the decoded movement intention is fed back to the patient
using the robot as haptic display either in a passive mode,
an autonomous active mode or a patient-driven passive-active
mode (see Section II-B). The monitored movement, force
and neural signals are finally used in a basic strategy for
rehabilitation sessions as described in Section II-C.

A. On-line Learning of Movement Intention with a BCI

A key step in the setup is the online decoding of the move-
ment intention of the system. This step requires collection and
pre-processing of neural signals as well as continuous online
adaptation of the movement intention classification.

The system relies on either EEG or ECoG to collect neural
signals. The sampled signals are subsequently preprocessed
using a centre-surround spatial sharpening filter or surface

Fig. 2. EEG electrode grid configu-
ration in our experiments. The relevant
electrodes are shown in green covered
parts of the pre-motor cortex, primary
motor cortex and somatosensory cortex
(adapted from [20]).

Laplacian [22] as well as a
band pass filter. The signals
are processed into 20 online
features per electrode by
discretizing the normalized
average power spectral den-
sities into 2 Hz frequency
bins in the frequency range
(2–42 Hz), as previously
used in motor imagery with
EEGs [23]. Welch’s method
is used to compute an es-
timate of the power spec-
tral density (PSD). In each
movement or resting pe-
riod, the first PSD estimate
is computed using 500ms

and from that moment on every 300 ms, allowing an on-line
classification every 300ms.

The online decoding decides between three movement in-
tentions of the patient, i.e., flexion, resting and extension, using
the features described above. On-line classification is achieved
by discriminating flexion vs resting, and extension vs resting.
Two linear support vector machine (SVM) classifiers [24] are
generated on-the-fly after a training section. The generation of
training data is part of the rehabilitation robotics strategy and
described in detail in Section II-C.

B. Haptic Interaction with a Robot Arm

Smart haptic feedback based on decoded movement inten-
tion would set a novel stroke rehabilitation approach based
on a brain-robot interface apart from previous ones. A haptic
reinforcement is likely to result into improved performance
over a pure robotics setting or a pure motor imagery one.
Few robots allow achieving sufficient performance for such
robot-based haptic display. A back-drivable low friction robot
arm with low-level torque control is needed, such as the
WAM robot arm made by Barrett Technology Inc. On this
robot arm, three different modes of haptic interaction could
be implemented, i.e., passive, autonomous active and patient-
driven passive-active. In all modes of operation, the subject can
be instructed to either try to perform a flexion or extension
movement or to perform motor imagery (also flexion or
extension).

In the passive mode, the patient is instructed to either
attempt arm flexion or arm extension or motor imagery while
the robot arm tracks the position and velocity of the patient’s
movement. When the patient is instructed to attempt a real
movement, the relevant DoFs of the robot arm are set in a
compliant mode where the external forces such as gravity are
compensated for. At the same time, all other joints are fixed to
a comfort posture customized to the individual patient. During
motor imagery, all the joints are fixed to this comfort posture.
Note that when the robot compensates the gravity of the elbow
joint to perform a flexion, it blocks the elbow joint in the
direction of an extension, and for an extension, it blocks the
joint in the direction of a flexion. This block helps the patient
during the movement attempt.

The robot arm performs an active flexion or extension of
the elbow joint, guiding the patient’s owns movement, while
all the other joints are fixed to an arbitrary (customizable)
position. This setting is called autonomous active mode. The
patient is instructed either to attempt to follow the robot arm’s
active movement or to perform motor imagery that mimics the
movement of the robot arm.

In a patient-driven passive-active mode, the Brain-Robot In-
terface decodes every 300ms whether the patient is attempting
to perform an arm movement (flexion or extension) or perform
motor imagery based on the neural signals coming from an
EEG- or ECoG-based BCI. Therefore, every 300ms the state
of the robot arm is updated to active movement (flexion or
extension) or resting. If the robot is in active movement state,
it performs an active flexion or extension of the elbow joint.
If the robot is in the resting state and the patient is instructed
to attempt real movements, it switches to the compliant mode

412



(i.e., gravity compensation), as in the passive mode, allowing
the patient to move the arm actively. If the robot is in resting
state but the patient is instructed to perform motor imagery,
the elbow joint is fixed to the current position. As in the
previous modes, all the other joints are fixed to an arbitrary
(customizable) position. This mode requires a neural classifier
of movement attempt or intention vs rest (see Section II-C for
a description of a rehabilitation session, which explains how
the classifier is trained). Finally note that we are providing
haptic feedback in this mode.

The speed, torques and maximum ranges used by the robot
when moving actively or fixing a position are customizable
in our setup. In addition, in all modes, when the patient’s
reaches a maximum range of extension or flexion, or a time
limit is reached, the robot guides actively the patient’s arm to
the initial position.
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Fig. 3. Timeline of events in a single trial. Please note that the spoken and textual cues are one-time events. For movement
periods of training sections, the movement of the robot is continuous, while for movement periods of test sections, the haptic
and visual feedback are events that are updated every 300ms (adapted from [20]).

Note that the hap-
tic feedback in the last
mode of operation is
given in a synchronized
manner with the sub-
ject’s attempt to move
the arm or the motor
imagery, and not at the
end of a trial as done
previously [16]. Mov-
ing the robot through-
out each trial, and not
at the end of it, is a key
point in terms of a fu-
ture neurorehabilitation
therapy, because it is a
strategy that is likely to
result in increased cor-
tical plasticity due to
Hebbian-type learning [17]–[19].

C. Resulting Rehabilitation Robotics Strategy

Our framework monitors the position and velocity of the
elbow joint of the Barrett arm and the EEG- or ECoG-based
neural activity of the patient throughout the rehabilitation
session. Such monitoring enables both real-time and off-line
analysis of correlations between movement performance and
neural signals.

A rehabilitation session with our Brain-Robot Interface is
divided into blocks. A block is a collection of an arbitrary
number of consecutive trials separated from each other by a
pause of a few seconds. In each trial, the patient is instructed
to either attempt to perform flexion or extension of the forearm
or perform motor imagery of the forearm (also flexion or
extension), using the elbow joint as the single degree of
freedom (see Figure 1). A trial is divided into three consecutive
phases. Each trial starts with the instruction“Relax”. Then,
patients are cued on the upcoming type of motor imagery
(“Flexion” or “Extension”), and later on, they are instructed
to initiate either the movement attempt or the motor imagery

by a “Go”-cue. This phase of movement attempt or motor
imagery lasts either until the arm hits its maximum range or a
maximum time is achieved. Cues are delivered visually as text
displayed on a computer screen. In addition, each textual cue is
spoken out loud as an auditory cue. For a better understanding,
Figure 3 illustrates the timeline of events during one trial.

The described blocks consist of two consecutive sections,
a training section and a test section. The training section lasts
an arbitrary number of trials and it aims to provide enough
amount of neural recordings for each type of movement (i.e.,
flexion and extension) and for rest. Note that the data for each
type of movement and rest are not collected in a consecutive
manner but in each period of movement and rest. The test
section lasts the remaining number of trials following the
training section.

During the training section, only the first two modes of
operation of our Brain-Robot Interface (i.e., passive and au-
tonomous active modes) can be used, as no neural classifier has
yet been trained. In the test section, any of the three modes of
operation (i.e., passive, autonomous active and patient-driven
passive-active) can be used. See Section II-B for a description
of the modes of operation of our Brain-Robot Interface. In
addition, during the test section, visual feedback is given in
form of an arrow on the computer screen during the movement
periods. At the beginning of the movement period of each trial,
the arrow is located in the center of the screen and its position
is updated every 300ms according to the decoded movement
intention.

III. FEASIBILITY EVALUATION AND EXPERIMENTS

We have evaluated our Brain-Robot Interface in a feasibility
study [20] with six right-handed healthy subjects and three
right-handed stroke patients with a hemiparesis of the left side
of their body using an 35-electrode EEG-based BCI module
(see Figure 2 for electrode grid spatial configuration). Here, we
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Fig. 4. Power spectra of the electrodes C3 and CP3 for healthy subjects: Power spectra in movement periods and the rest periods for the electrodes
C3 and CP3 in the frequency band 2–30 Hz for motor imagery (i.e., no robot neither real movement), the autonomous active mode and the patient-driven
passive-active mode (adapted from [20]).

review these experimental results. First, we show the position
of the elbow joint for one of the stroke patients (performing
an impaired real movement) for all modes of operation. Later
on, we discuss the powerspectra of two electrodes that lie
over the motor and somatosensory area (C3 and CP3) for six
healthy subjects (performing motor imagery) and all modes of
operation. Finally, we also study healthy subjects and compare
the spatial and spectral distribution of classifier weights of
training periods in which the robot is in autonomous active
mode and of training periods in which the robot is in passive
mode.

Figure 5 shows the position and velocity of the elbow joint
for the different modes of operation during one run with
one of the stroke patients. We observe empirical evidence of
the following facts. First, both for the autonomous and the
patient-driven passive-active mode, the elbow joint reaches
the maximum range in a larger number of cases than for the
passive mode, in which the patient attempts to perform the arm
movement only with the help of gravity compensation. Second,
the movement is smoother in the patient-driven passive-active
mode than in the passive mode – the robot arm active
movement establishes a uniform pace for the patient to follow.
Third, when in compliant mode (i.e., gravity compensation),
there is a faster drop at the beginning of a movement period
in which a flexion is attempted. This effect occurs because the
robot arm was heading to the floor and therefore the gravity
compensation makes the robot arm drop in absence of any
force.

Figure 4 shows the power spectra per frequency bin for
the electrodes C3 and CP3 for the passive mode, autonomous

active mode and the patient-driven passive-active mode for six
healthy subjects that are instructed to perform motor imagery
(flexion or extension). We observe a bigger ERD/ERS modula-
tion for both the autonomous active and patient-driven passive-
active modes in comparison with motor imagery, i.e., when
the robot is moving the subject’s arm, the desynchronization
is stronger.

Figure 6 shows the classifier weights per electrode averaged
over the frequency bands 8–16 Hz and 18–28 Hz on a group
level for the healthy subjects. Note that healthy subjects were
instructed to perform motor imagery of the right forearm.
We observe empirical evidence of the following facts. First,
electrodes over the motor area representing the right arm, i.e.,
C3, CP3, FC3, FC1, . . . , get larger weights (i.e., have a higher
discriminative power) when the robot arm is in autonomous
active mode (i.e., it guides the subject’s arm during the training
period) in both frequency bands. Second, there is a higher
discriminative power of the sensorimotor area during training
periods in which the robot arm is in autonomous active mode
for the frequency band that contains the β rhythm. Third, the
spatial distribution of the weights in the classifiers indicates
that the classifiers employed neural activity, as the weights in
the peripheral locations are low. Hence, it is not likely that
electromyographic (EMG) activity coming from movements
of the head or the face plays a major role.

Figure 7 shows the average classifier weights per frequency
bin for the electrodes C3, CP3 and C4. We observe a shift
in discriminative power towards higher frequencies, i.e., from
µ rythm desynchronization to β rythm desynchronization, for
training periods in which the autonomous active mode is used.
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(a) 8–16 Hz, autonomous active (b) 8–16 Hz, passive (c) 18–28 Hz, autonomous active (d) 18–28 Hz, passive

Fig. 6. Discriminative power of the electrodes for healthy subjects: Comparison of the classifier weights for the frequency bands (a,b) 8–16 Hz and (c,d)
18–28 Hz, between the autonomous active mode (a,c) and the passive mode (b,d) (adapted from [20]).

IV. DISCUSSION AND CONCLUSION

In this paper, we have introduced a Brain-Robot Interface
for neurorehabilitation that artificially supports the sensorimo-
tor feedback loop. The additional mileage of our system with
respect to previous work [16] is provided by the following
characteristics. First, there is a synchronization of the subject’s
intention or attempt with the actual movement of the robot that
guides the subject’s impaired limb, not as in previous studies
in which haptic feedback was provided at the end of each trial.
This synchronization is likely to result in an increased cortical
plasticity due to Hebbian-type learning rules [17]–[19], poten-
tially resulting in an improvement of the functional recovery.
Second, our system supports both subject’s motor imagery and
subject’s real movement, given that it is not yet clear what is
the optimal strategy for neurorehabilitation. Third, our system
enables simultaneous monitoring of positions and velocities
of the elbow joint and neural signals, and this will enable
future research work and rehabilitation strategies based on the
correlations between real movement performance and neural
content.

The beneficial effect of our rehabilitation framework is
likely to depend on the presence of proprioception. However,
there is no a-priori reason why stroke patients should not have
proprioception. All stroke patients in our studies had intact
proprioception, and previous studies have shown that most
stroke patients recover proprioception eight weeks post-stroke

Fig. 5. Position of the elbow joint for all three modes of operation of our
Brain-Robot Interface. Horizontal axis indicates time (in seconds), and vertical
axis indicates position of the elbow joint (in radians).

despite remaining motor disabilities [25].
Besides the relevance of our rehabilitation framework for a

potential stroke therapy, our strategy may also be beneficial
for other subject groups. For example, subjects in late stages
of ALS appear not to be capable of modulating their SMR suf-
ficiently, as indicated by the fact that so far no communication
with a completely locked-in subject has been established by
means of a BCI. While the extent of sensory feedback in late
stages of ALS remains unclear, haptic feedback might also
support these subjects in initiating volitional modulation of
their SMR.
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